GIS within an all-relational framework

Jennifer Cadkin ESRI- Technical Marketing

Ernie Ott ESRI-Transportation Marketing

GIS-T April 9-11, 2001

Back in the day...

- When God created the earth:
 - After He rested on the 7th day...
 - He created the computer
 - Which was good
 - But He saw the computer was alone
 - Which was not so good
 - So He put the computer into stand-by mode, took from it a RIB, and made from it data (RIB: reusable instruction byte)
 - After this, the man and the woman, and all their children for many generations to come flocked to see the data, and the computer was never alone again.

rcGIS-sc

Why a database?

- Organizations need:
 - One file -- not a bunch of files
 - More flexible to use
 - Easier to manage
 - Secure, but accessible
 - Scalable
 - Persists across use and time

ArcGIS-sc

Why store GIS data in an RDBMS

- GIS users want better data management
 - data integrity
 - fast access for many simultaneous users
 - efficient use of the network
 - common environment to manage spatial and tabular data
 - SQL standard

Why store GIS data in an RDBMS

- MIS users want spatial functionality
 - Include spatial data as a managed enterprise asset
 - Support GIS applications
 - Spatially enable applications

Example:

- Query to determine bus route and fare
- Operator types in to/from address
- Searches for route
- A rate appears on screen
- The operator never sees a map

GIS-sc 12

What is the geodatabase

- A new geographic data model
- All relational data storage
- Features with behavior
 - Speed Limit coded value domains
- Topological relationships
 - Geometric Network
- Business Objects
 - Locator, Geoprocessor

rcGIS-sc 1

Database Design

- Import spatial, tabular, raster and CAD data and/or
- Refine and extend existing classes; define new classes, or
- Use CASE and UML for a ground-up redesign of large system

ArcGIS-sc :

The UML/Case Tools Approach

- Use UML to specify
 - Object, feature, and relationship classes
 - class properties, methods, subtypes
 - relationship and connectivity rules
- Use a CASE tool to capture your UML model.

ArcGIS-sc 2

Summary: Why the geodatabase

- Stored in a RDBMS
- Multi-user editing w/ versions and long transactions
- Object oriented geographic data modeling using UML and case tools
- Features with behavior
- Relationships
- Topological relationships
- A set of 'objects' and ' rules' for GIS-T
 - Locators, Event Geoprocessor

ArcGIS-sc 3

